Потери в силовом трансформаторе

Основные характеристики трансформатора – это напряжение первичной и вторичной обмотки, а также мощность трансформатора. Мощность подается от первичной обмотки на вторичную электромагнитным путем. При этом не вся мощность из электрической сети доходит до нагрузки, которая питает потребителей. Разница мощности, которая поступает на первичную обмотку и мощности, которая возникает во вторичной обмотке называется потерями трансформатора.  

Виды потерь силового трансформатора

Так как силовой трансформатор, является статическим электромагнитным устройством – то он не имеет движущихся деталей. Это значит, что механические потери такому оборудованию не свойственны. Потери в нем – это потери активной мощности. Они происходят в магнитном сердечнике, обмотках и других частях оборудования. Во время разных режимов работы трансформатора величина потерь меняется.

Потери холостого хода трансформатора

На холостом ходу к вторичной обмотке трансформатора не подключена нагрузка. Поэтому весь ток, который подается на первичную обмотку, идет на намагничивание сердечника. Такие потери принято назвать магнитными и обозначать Рм. Общее значение потерь холостого хода рассчитывается при номинальной силе тока и напряжении.  

Ро = Рм+I2о * r1,

Iо – сила тока в первичной обмотке,

r1 – это сопротивление первичной обмотки.

Потери холостого хода – это постоянная цифра, которая зависит от суммы намагничивающей и активной части. А эти величины неизменны, так как на них влияют характеристики обмотки и магнитного сердечника. По значению потерь холостого хода можно судить о работе трансформатора. 

Основные потери в обмотках трансформатора

В трансформаторе под нагрузкой электромагнитная мощность, которая поступает на первичную обмотку, передается вторичной. При этом во вторичной обмотке возникает электрический ток I2, а в первичной – ток I1. Первичный ток напрямую зависит от тока нагрузки I2.

Часть мощности теряется в обмотках. Эти потери называются общими потерями мощности под нагрузкой – Рнагр. Они пропорциональны квадратам первичного и вторичного тока, а также значениям сопротивления обмоток.

Рнагр = I21r1 + I22r2,

где I1 и I2 — токи в первичной и вторичной обмотках,

r1 и r2 — значения сопротивлений первичной и вторичной обмоток.

Как видите, потери под нагрузкой полностью зависят от нагрузки трансформатора. Поэтому они носят непостоянный характер.

Дополнительные потери в обмотках трансформатора

В обмотках трансформатора и ферромагнитном сердечнике возникают не только токи нагрузки. Есть токи, которые появляются и замыкаются внутри проводов или внутри пластин магнитопровода – они называются вихревыми токами. Есть токи, которые появляются между параллельными витками обмотки или между отдельными пластинами сердечника – это циркулирующие токи. Направление этих побочных потоков перпендикулярно основному току в обмотках и сердечнике. Поэтому появление вихревых и циркулирующих токов снижает эффективность работы трансформатора.

Кроме обмоток, добавочные потери возникают в стенках самого бака, в прессующих кольцах, в ярмовых балках и других элементах конструкции трансформатора.

Конструкторы электромагнитного оборудования постоянно ищут способы уменьшения потерь и увеличения КПД трансформатора. Например, магнитный сердечник трансформатора делается не монолитным, а набирается из отдельных тонких пластин, которые тщательно изолируются. Изоляция отдельных витков обмоток также положительно сказывается на КПД оборудования. У современных силовых трансформаторов полезная мощность КПД достигает 90% и выше.